Type of Solar Cell

The key facts about each type of solar cell:

  • Monocrystalline

Overview and Appearance
This is the oldest and most developed of the three technologies. Monocrystalline panels as the name suggests are created from a single continuous crystal structure. A Monocrystalline panel can be identified from the solar cells which all appear as a single flat color.

They are made through the Czochralski method where a silicon crystal ‘seed’ is placed in a vat of molten silicon. The seed is then slowly drawn up with the molten silicon forming a solid crystal structure around the seed known as an ingot. The ingot of solid crystal silicon that is formed is then finely sliced ingot what is known as a silicon wafer. This is then made into a cell.


Monocrystalline solar panels have the highest efficiency rates since they are made out of the highest-grade silicon. The efficiency rates of monocrystalline solar panels are typically 15-20%. SunPower produces the highest efficiency solar panels on the U.S. market today. Their E20 series provide panel conversion efficiencies of up to 20.1%.[3] Update (April, 2013): SunPower has now released the X-series at a record-breaking efficiency of 21.5%. [7]
Monocrystalline silicon solar panels are space-efficient. Since these solar panels yield the highest power outputs, they also require the least amount of space compared to any other types. Monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels.
Monocrystalline solar panels live the longest. Most solar panel manufacturers put a 25-year warranty on their monocrystalline solar panels.
Tend to perform better than similarly rated polycrystalline solar panels at low-light conditions.


  • Monocrystalline solar panels are the most expensive. From a financial standpoint, a solar panel that is made of polycrystalline silicon (and in some cases thin-film) can be a better choice for some homeowners.
  • If the solar panel is partially covered with shade, dirt or snow, the entire circuit can break down. Consider getting micro-inverters instead of central string inverters if you think coverage will be a problem. Micro-inverters will make sure that not the entire solar array is affected by shading issues with only one of the solar panels.
  • The Czochralski process is used to produce monocrystalline silicon. It results in large cylindrical ingots. Four sides are cut out of the ingots to make silicon wafers. A significant amount of the original silicon ends up as waste.
  • Monocrystalline solar panels tend to be more efficient in warm weather. Performance suffers as temperature goes up, but less so than polycrystalline solar panels. For most homeowners temperature is not a concern.
  • Polycrystalline

Overview and Appearance
Polycrystalline or Multicrystalline are a newer technology and vary in the manufacturing process.


Polycrystalline also start as a silicon crystal ‘seed’ placed in a vat of molten silicon. However, rather than draw the silicon crystal seed up as with Monocrystalline the vat of silicon is simply allowed to cool. This is what forms the distinctive edges and grains in the solar cell.


The process used to make polycrystalline silicon is simpler and cost less. The amount of waste silicon is less compared to monocrystalline.
Polycrystalline solar panels tend to have slightly lower heat tolerance than monocrystalline solar panels. This technically means that they perform slightly worse than monocrystalline solar panels in high temperatures. Heat can affect the performance of solar panels and shorten their lifespans. However, this effect is minor, and most homeowners do not need to take it into account.


The efficiency of polycrystalline-based solar panels is typically 13-16%. Because of lower silicon purity, polycrystalline solar panels are not quite as efficient as monocrystalline solar panels.
Lower space-efficiency. You generally need to cover a larger surface to output the same electrical power as you would with a solar panel made of monocrystalline silicon. However, this does not mean every monocrystalline solar panel perform better than those based on polycrystalline silicon.
Monocrystalline and thin-film solar panels tend to be more aesthetically pleasing since they have a more uniform look compared to the speckled blue color of polycrystalline silicon.


  • Thin Film

Overview and Appearance
Thin film panels are a totally different technology to Mono and Polycrystalline panels. They are a new technology compared to Mono and Polycrystalline cells and would not be considered a mature technology as vast improvements in this technology are expected in the next 10 years.

A thin film panel can be identified as having a solid black appearance. They may or may not have a frame, if the panel has no frame it is a thin film panel.

Thin film panels are made by depositing a photovoltaic substance onto a solid surface like glass. The photovoltaic substance that is used varies and multiple combinations of substances have successfully and commercially been used. Examples of the most common photovoltaic substances used are:
Thin film cells have got a reputation as being the ‘worst’ of the solar panel technologies because they have the lowest efficiency. However, this is only because they have a lower power efficiency which only means they require the most space for the same amount of power. Since they are becoming the cheapest panels to produce because of the low material costs for thin film they are quickly becoming the more economically efficient panel types.


  • Mass-production is simple. This makes them and potentially cheaper to manufacture than crystalline-based solar cells.
  • Their homogenous appearance makes them look more appealing.
  • Can be made flexible, which opens up many new potential applications.
  • High temperatures and shading have less impact on solar panel performance.
  • In situations where space is not an issue, thin-film solar panels can make sense.



  • Thin-film solar panels are in general not very useful for in most residential situations.

    They are cheap, but they also require a lot of space. SunPower`s monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels for the same amount of space.[3]

  • Low space-efficiency also means that the costs of PV-equipment (e.g. support structures and cables) will increase.
  • Thin-film solar panels tend to degrade faster than mono- and polycrystalline solar panels, which is why they typically come with a shorter warranty.